

Mark Scheme (Results)

Summer 2013

GCE Core Mathematics 2 (6664/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA035664
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = (ax^2 + bx + c) = (mx + p)(nx + q)$, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = (ax^2 + bx + c) = (mx + p)(nx + q)$, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = (ax^2 + bx + c) = (ax^2 + bx +$

2. Formula

Attempt to use <u>correct</u> formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c$, $q \neq 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. <u>Differentiation</u>

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Question Number	Scheme	Marks
1. (a)	$\left\{r=\right\}\frac{2}{3}$	B1 (1)
(b)	$\{p=\}$ 8	B1 cao
(c)	$ \{r = \} \frac{2}{3} $ $ \{p = \} 8 $ $ \{S_{15} = \} \frac{18(1 - (\frac{2}{3})^{15})}{1 - \frac{2}{3}} $	(1) M1
	${S_{15} = 53.87668} \Rightarrow S_{15} = awrt 53.877$	A1
		(2) [4]
	Notes for Question 1	
(a)	B1: Accept $\frac{12}{18}$, 0.6 or 0.6 recurring, or even 0.667 (3sf) but not 0.6 or 0.67	
(b)	B1: accept 8 only	
(c)	M1: Applies this formula $S_{15} = \frac{18(1 - (\text{their } r)^{15})}{1 - (\text{their } r)}$, can be implied by their answer. For the	is mark
	they may use any value for r except $r = 1$ or $r = 0$ (even 3/2 or -6 may be used) A1: Answers which round to 53.877	
Alternative method for (c)	M1: (Adding terms is an unlikely method for this question) Need to see 15 terms listed as 18+12+0.06165877 or can be implied by correct answer	
	A1: awrt 53.877 Answer only : 53.9 is M0A0 with no working, but 53.877 with no working is M1A1	

Question	Scheme	Marks					
Number	$(2+3x)^4$ - Mark (a) and (b) together						
2 (a)	$2^{4} + {}^{4}C_{1}2^{3}(3x) + {}^{4}C_{2}2^{2}(3x)^{2} + {}^{4}C_{3}2^{1}(3x)^{3} + (3x)^{4}$						
2. (a)	First term of 16	B1					
	$\left({}^{4}C_{1} \times \times x \right) + \left({}^{4}C_{2} \times \times x^{2} \right) + \left({}^{4}C_{3} \times \times x^{3} \right) + \left({}^{4}C_{4} \times \times x^{4} \right)$	M1					
	$=(16 +)96x + 216x^2 + 216x^3 + 81x^4$ Must use Binomial – otherwise A0,	A1 A1					
	A0	(4)					
(b)	$(2-3x)^4 = 16 - 96x + 216x^2 - 216x^3 + 81x^4$	(4) B1ft					
(b)	(2-3x) = 10 - 90x + 210x - 210x + 81x	(1)					
		5					
Alternative	$(2+3x)^4 = 2^4(1+\frac{3x}{2})^4$						
method (a)	2						
	$2^{4} \left(1 + {}^{4}C_{1} \left(\frac{3x}{2}\right) + {}^{4}C_{2} \left(\frac{3x}{2}\right)^{2} + {}^{4}C_{3} \left(\frac{3x}{2}\right)^{3} + \left(\frac{3x}{2}\right)^{4}\right)$						
	Scheme is applied exactly as before Notes for Question 2						
(a)	Notes for Question 2 B1: The constant term should be 16 in their expansion						
(4.)	M1: Two binomial coefficients must be correct and must be with the correct power of x . Acc	ept					
	${}^{4}C_{1}$ or ${4 \atop 1}$ or 4 as a coefficient, and ${}^{4}C_{2}$ or ${4 \atop 2}$ or 6 as another Pascal's triangle may be						
	used to establish coefficients.						
	A1: Any two of the final four terms correct (i.e. two of $96x + 216x^2 + 216x^3 + 81x^4$) in expansion						
	following Binomial Method.						
	A1: All four of the final four terms correct in expansion. (Accept answers without + signs, callisted with commas or appear on separate lines)	in be					
(b)	B1ft: Award for correct answer as printed above or ft their previous answer provided it has	five					
	terms ft and must be subtracting the x and x^3 terms						
	Allow terms in (b) to be in descending order and allow $+-96x$ and $+-216x^3$ in the series. (According to the context of the	ept					
	answers without + signs, can be listed with commas or appear on separate lines)						
	e.g. The common error $2^4 + {}^4C_12^33x + {}^4C_22^23x^2 + {}^4C_32^13x^3 + 3x^4 = (16) + 96x + 72x^2 + 24x^2 + 24x$	$4x^3 + 3x^4$					
	• • • • • • • • • • • • • • • • • • • •	31ft so					
	3/5						
	Fully correct answer with no working can score B1 in part (a) and B1 in part (b). The question st the Binomial theorem and if there is no evidence of its use then M mark and hence A marks cannot be						
	Squaring the bracket and squaring again may also earn B1 M0 A0 A0 B1 if correct	James .					
	Omitting the final term but otherwise correct is B1 M1 A1 A0 B0ft so 3/5						
	If the series is divided through by 2 or a power of 2 at the final stage after an error or omission of the series is divided through by 2 or a power of 2 at the final stage after an error or omission of the series is divided through by 2 or a power of 2 at the final stage after an error or omission of the series is divided through by 2 or a power of 2 at the final stage after an error or omission of the series is divided through by 2 or a power of 2 at the final stage after an error or omission of the series is divided through by 2 or a power of 2 at the final stage after an error or omission of the series is divided through by 2 or a power of 2 at the final stage after an error or omission of the series is divided through by 2 or a power of 2 at the final stage after an error or omission of the series is divided through by 2 or a power of 2 at the final stage after an error or omission of the series is divided through the series of the series is divided through the series of the s						
	resulting in all even coefficients then apply scheme to series before this division and ignore s work (isw)	subsequent					

Question Number	Scheme		Marks				
3. (a)	Either (Way 1): Attempt $f(3)$ or $f(-3)$	Or (Way 2): Assume $a = -9$ and attempt $f(3)$ or $f(-3)$	M1				
	$f(3) = 54 - 45 + 3a + 18 = 0 \implies 3a = -27 \implies a = -9 *$	f(3) = 0 so (x - 3) is factor	A1 * cso (2)				
	Or (Way 3): $(2x^3 - 5x^2 + ax + 18) \div (x - 3) = 2x^2 + px + ax + 18$ is an expression in terms of a	+q where p is a number and q	M1				
	Sets the remainder $18+3a+9=0$ and solves to give $a=0$	= -9	A1* cso (2)				
(b)	Either (Way 1): $f(x) = (x - 3)(2x^2 + x - 6)$ $= (x - 3)(2x - 3)(x + 2)$		M1A1 M1A1 (4)				
	Or (Way 2) Uses trial or factor theorem to obtain $x = -2$ (Uses trial or factor theorem to obtain both $x = -2$ and $x = 3$) Puts three factors together (see notes below) Correct factorisation: $(x - 3)(2x - 3)(x + 2)$ or $(3 - x)(3 - 2(x - 3)(x - \frac{3}{2})(x + 2))$ oe	3/2	M1 A1 M1 A1 (4)				
	Or (Way 3) No working three factors $(x-3)(2x-3)(x-3)$	+ 2) otherwise need working	M1A1M1A1				
(c)	${3^y = 3 \Rightarrow} y = 1 \text{or } g(1) = 0$						
	$\left\{3^{y} = 1.5 \Rightarrow \right\} \log\left(3^{y}\right) = \log 1.5 \text{or } y = \log_{3} 1.5$		M1				
	$\{y = 0.3690702\} \Rightarrow y = \text{awrt } 0.37$		A1 (3)				
			[9				
(a)	Notes for Question 3 M1 for attempting either $f(3)$ or $f(-3)$ – with numbers substituted into expression						
	A1 for applying $f(3)$ correctly , setting the result equal to result given on the paper i.e. $a = -9$. (Do not accept $x = -9$ If they assume $a = -9$ and verify by factor theorem or division (or equivalent such as QED or a tick).	0, and manipulating this correctly 9) Note that the answer is given in ision they must state $(x - 3)$ is a fac	part (a).				
(b)	1 st M1: attempting to divide by $(x-3)$ leading to a 3TQ beginning with the correct term, usually $2x^2$ (Could divide by $(3-x)$, in which case the quadratic would begin $-2x^2$.) This may be done by a varie of methods including long division, comparison of coefficients, inspection etc. 1 st A1: usually for $2x^2 + x - 6$ Credit when seen and use isw if miscopied 2 nd M1: for a <i>valid*</i> attempt to factorise their quadratic (* see notes on page 6 - General Principles for Core Mathematics Marking section 1) 2 nd A1 is cao and needs all three factors together. Ignore subsequent work (such as a solution to a quadratic equation.) NB: $(x-3)(x-\frac{3}{2})(x+2)$ is M1A1M0A0, $(x-3)(x-\frac{3}{2})(2x+4)$ is M1A1M1A0, but $2(x-3)(x-\frac{3}{2})(x+2)$ is M1A1M1A1.						
(c)	B1: $y = 1$ seen as a solution – may be spotted as answer –	no working needed. Allow also for	r g(1) = 0.				
	M1: Attempt to take logs to solve $3^y = \alpha$ or even $3^{ky} = \alpha$, but root of $f(x) = 0$ (ft their factorization) A1: for an answer that rounds to 0.37. If a third answer is lose final A mark	t not $6^y = \alpha$ where $\alpha > 0$ and $\alpha \neq 3$	3 & was a				

Question Number					Scheme					Marks
4.	X	0	0.5	1	1.5	2	2.5	3		
7.	у	5	4	2.5	1.538	1	0.690	0.5		
(a)	$\begin{cases} At \ x = 1 \end{cases}$.5, y = 1	.538 (only))						B1 cao
										[1]
(b)	$\frac{1}{2} \times 0.5$;								B1 oe	
		± 0.5 ± 2(.	1 ± 2 5 ± t	heir 1 538	± 1 ± 0.690)\		For structu	re of S	₹.	MIAIG
	13-	- 0.3 + 2(++ 2.3 + t	1.556	+1+0.690) $.538+1+0.69$		1 or structu	<u></u>	,	M1 <u>A1ft</u>
	$\frac{1}{2} \times 0.5 \times $	(5 + 0.5)	+2(4+2.	5 + their 1	.538 + 1 + 0.69	$\frac{90)}{}$ $\left\{ = \frac{1}{4} \right\}$	(24.956) = 0	5.239 } = av	vrt 6.24	A1
										[4]
(c)	Adds Are:	a of Recta	ngle or fir	st integral	$= 3 \times 4$ or [$4x^{3}$ to pr	evious ans	wer		M1
(C)					"18.239"} = "a	- 0			war)	Alft
			,		added 4 seven					[2]
	11121,	· provide		.5 1/10110 (90 10 111 (4 01)	-)	7
					Notes for (Question 4				
(a) (b)	B1: 1.538 B1: for using $\frac{1}{2} \times 0.5$ or $\frac{1}{4}$ or equivalent.									
(D)		-	•			eds the fir	st bracket to	contain fir	st v value i	nlus last
	M1: requires the correct $\{\}$ bracket structure. It needs the first bracket to contain first y value plus y value and the second bracket to be multiplied by 2 and to be the summation of the remaining y value									
	the table with no additional values. If the only mistake is a copying error or is to omit one value fr									from 2nd
	bracket this may be regarded as a slip and the M mark can be allowed (An extra repeated term forfeit									orfeits the
	M mark however). M0 if values used in brackets are x values instead of y values A1ft: for the correct bracket {} following through candidate's y value found in part (a).									
			ch rounds	_	owing unough	Candidate	s y value ic	una m part	(a).	
					for 0.25, M1 1	for 1/2 <i>h</i> (<i>a</i>	+ <i>b</i>) used :	5 or 6 times	(and A1ft	if it is all
	· ·		s before.		(F 0 F) 0 (4 0 (00)	5.4	3.54 4.0
					(5+0.5)+2(4					
					the calculation licates this erro		done correc	tly (then fu	II marks ca	in be
(c)	given). An answer of 20.831 usually indicates this error. M1: Relates previous answer (not integral of previous answer) to this question by integrating 4									
	between li A1ft: for 1			by using	geometry to fi	nd rectang	tle and addi	ng.		
Alternative				e for part	(b)- using the t	able from	(a) with 4 a	dded to eac	ch cell of th	ne table
method	Those who do a trapezium rule for part (b)- using the table from (a) with 4 added to each cell of the Get: M1 for "their $\frac{1}{4}$ "× $\{9 + 4.5 + 2(8 + 6.5 + \text{their } 5.538 + 5 + 4.690)\}$ = (structure must be correct									
(c)	one copyi			`						
		•	• .	12 + previ	ous answer).					

Question	Scheme	Marks
Number	Mark (a) and (b) together.	
5. (a)	Usually answered in radians: Uses either $\frac{1}{2}ab\sin(\text{angle})$ or $\frac{1}{2}(12)^2(\text{angle})$ or both	M1
	Area = $\frac{1}{2}(23)(12)\sin 0.64$ or $\frac{1}{2}(12)^2(\pi - 0.64)$ {= 82.41297091 or 180.1146711}	A1
	Area = $\frac{1}{2}(23)(12)\sin 0.64 + \frac{1}{2}(12)^2(\pi - 0.64)$ {= 82.41297091 + 180.1146711}	A1
	${\text{Area} = 262.527642}$ = awrt 262.5 (m ²) or 262.4(m ²) or 262.6 (m ²)	A1 (4)
(b)	$CDE = 12 \times (angle), = 12(\pi - 0.64) \{ \Rightarrow CDE = 30.01911 \}$	M1, A1
· /	$AE^2 = 23^2 + 12^2 - 2(23)(12)\cos(0.64) \Rightarrow AE^2 = \text{or } AE = $ { $AE = 15.17376$ }	M1
	Perimeter = $23 + 12 + 15.17376 + 30.01911$	M1
	= 80.19287 = awrt 80.2 (m)	A1
		(5) [9]
	Notes for Question 5	[2]
(a)	M1: uses either area of triangle formula as given in mark scheme, or area of sector or both (rimplied by answer)	nay be
	A1: one correct area expression (with correct angle used) $\frac{1}{2}(23)(12)\sin 0.64$ or $\frac{1}{2}(12)^2(\pi -$	- 0.64) or
	see awrt 82.4 or awrt 180 (180 may be split as 226.2(semicircle) minus 46.1(small sector)) A1: two correct area expressions (with correct angles) added together (allow 2.5 as implyin $\pi - 0.64$) or see awrt 82.4 + awrt 180 (or 226 - 46)	ng
	A1: answers which round to 262.5 or 262.4 or 262.6	
(b)	1 st M1 for attempt to use $s = r \theta$ (any angle)	
	1 st A1 for $\pi - 0.64$ in the formula (or 2.5)	
	2^{nd} M1: Uses correct cosine rule to obtain AE or AE^2 (this may appear in part (a)) 3^{rd} M1(independent): Perimeter = $23 + 12 +$ their $AE +$ their CDE	
	2 nd A1: awrt 80.2 (ignore units – even incorrect units)	
Degrees (a)	Uses either $\frac{1}{2}ab\sin(\text{angle})$ or $\frac{\text{anglein degrees}}{360} \times \pi(12)^2$ or both for M1	
	Area = $\frac{1}{2}$ (23)(12) sin 36.7 or $\frac{(180-36.7)}{360} \times \pi (12)^2 \left\{ = awrt \ 82.4 \ or \ 180 \right\}$ A1	
	Area = $\frac{1}{2}$ (23)(12) sin 36.7 + $\frac{(180-36.7)}{360}$ × π (12) ² {= awrt 82.4 + 180} A1	
4.5	Final mark as before	
(b)	$CDE = \frac{\text{Angle in degrees}}{360} \times 24\pi, = \frac{180 - 36.7}{360} \times 24\pi \{ \Rightarrow CDE = 30.01268 \}$ M1, A1	
	Final three marks as before	

Question Number	Scheme	Marks
6. (a)	Seeing -4 and 2.	B1
(b)	$x(x+4)(x-2) = \underline{x^3 + 2x^2 - 8x}$ or $\underline{x^3 - 2x^2 + 4x^2 - 8x}$ (without simplifying)	(1) <u>B1</u>
	$\int (x^3 + 2x^2 - 8x) dx = \frac{x^4}{4} + \frac{2x^3}{3} - \frac{8x^2}{2} \left\{ + c \right\} \qquad \text{or } \frac{x^4}{4} - \frac{2x^3}{3} + \frac{4x^3}{3} - \frac{8x^2}{2} \left\{ + c \right\}$	M1A1ft
	$\left[\frac{x^4}{4} + \frac{2x^3}{3} - \frac{8x^2}{2} \right]_{-4}^{0} = (0) - \left(64 - \frac{128}{3} - 64 \right) \text{ or } \left[\frac{x^4}{4} + \frac{2x^3}{3} - \frac{8x^2}{2} \right]_{0}^{2} = \left(4 + \frac{16}{3} - 16 \right) - (0)$	dM1
	One integral = $\pm 42\frac{2}{3}$ (42.6 or awrt 42.7) or other integral = $\pm 6\frac{2}{3}$ (6.6 or awrt 6.7)	A1
	Hence Area = "their $42\frac{2}{3}$ " + "their $6\frac{2}{3}$ " or Area = "their $42\frac{2}{3}$ " - "-their $6\frac{2}{3}$ "	dM1
	$=49\frac{1}{3} \text{ or } 49.3 \text{ or } \frac{148}{3} (\text{NOT} - \frac{148}{3})$	A1
	(An answer of = $49\frac{1}{3}$ may not get the final two marks – check solution carefully)	(7)
		[8]
(a)	Notes for Question 6 B1: Need both -4 and 2. May see $(-4,0)$ and $(2,0)$ (correct) but allow $(0,-4)$ and $(0,2)$ or $A = -4$, B indeed any indication of -4 and 2 – check graph also	= 2 or
(b)	B1: Multiplies out cubic correctly (terms may not be collected, but if they are, mark collected term M1: Tries to integrate their expansion with $x^n \to x^{n+1}$ for at least one of the terms A1ft: completely correct integral following through from their CUBIC expansion (if only quadrat quartic this is A0) dM1: (dependent on previous M) substituting EITHER -a and 0 and subtracting either way round similarly for 0 and b. If their limits -a and b are used in ONE integral, apply the Special Case A1: Obtain either $\pm 42\frac{2}{3}$ (or 42.6 or awrt 42.7) from the integral from -4 to 0 or $\pm 6\frac{2}{3}$ (6.6 or awrt from the integral from 0 to 2; NO follow through on their cubic (allow decimal or improper equivalent and the integral from 0 to 2; NO follow through on their cubic (allow decimal or improper equivalent by M0A0. dM1 (depends on first method mark) Correct method to obtain shaded area so adds two positive numbers (areas) together or uses their positive value minus their negative value, obtained from the separate definite integrals. A1: Allow 49.3, 49.33, 49.333 etc. Must follow correct logical work with no errors seen. For full marks on this question there must be two definite integrals, from -4 to 0 and from 0 to 2, to the evaluations for 0 may not be seen. (Trapezium rule gets no marks after first two B marks)	OR below. 16.7) alents ks, e
(b)	Special Case: one integral only from –a to b: B1M1A1 available as before, then $\left[\frac{x^4}{4} + \frac{2x^3}{3} - \frac{8x^2}{2}\right]_{-4}^2 = (4 + \frac{16}{3} - 16) - \left(64 - \frac{128}{3} - 64\right) = -6\frac{2}{3} + 42\frac{2}{3} = \dots$ dM1 for correct use limits –a and b and subtracting either way round. A1 for 36: NO follow through. Final M and A marks not available. Max 5/7 for part (b)	of their

Question Number	Scheme	Marks					
7. (i) Method 1	$\log_2\left(\frac{2x}{5x+4}\right) = -3 \text{ or } \log_2\left(\frac{5x+4}{2x}\right) = 3, \text{ or } \log_2\left(\frac{5x+4}{x}\right) = 4 \text{ (see special case 2)}$	M1					
	$\left(\frac{2x}{5x+4}\right) = 2^{-3} \text{ or } \left(\frac{5x+4}{2x}\right) = 2^{3} \text{ or } \left(\frac{5x+4}{x}\right) = 2^{4} \text{ or } \left(\log_{2}\left(\frac{2x}{5x+4}\right)\right) = \log_{2}\left(\frac{1}{8}\right)$	M1					
	$16x = 5x + 4 \implies x =$ (depends on previous Ms and must be this equation or equivalent)	dM1					
	$x = \frac{4}{11}$ or exact recurring decimal 0.36 after correct work						
7(i)	$\log_2(2x) + 3 = \log_2(5x + 4)$						
Method 2	So $\log_2(2x) + \log_2(8) = \log_2(5x + 4)$ (3 replaced by $\log_2 8$)	2 nd M1					
	Then $\log_2(16x) = \log_2(5x + 4)$ (addition law of logs)	1 st M1					
/••\	Then final M1 A1 as before	dM1A1					
(ii)	$\log_a y + \log_a 2^3 = 5$	M1					
	$\log_a 8y = 5$ Applies product law of logarithms.	dM1					
	$y = \frac{1}{8}a^5$	A1cao					
		(3) [7]					
	Notes for Question 7	L, 1					
(i)	1st M1: Applying the subtraction or addition law of logarithms correctly to make two log terms in x						
	into one log term in x $2^{\text{nd}} \text{ M1: For RHS of either } 2^{-3}, 2^{3}, 2^{4} \text{ or } \log_{2}\left(\frac{1}{8}\right), \log_{2} 8 \text{ or } \log_{2} 16 \text{ i.e. using connection between}$						
	log base 2 and 2 to a power. This may follow an earlier error. Use of 3^2 is M0 3^{rd} dM1: Obtains correct linear equation in x . usually the one in the scheme and attempts $x = A1$: cso Answer of 4/11 with no suspect log work preceding this.						
(ii)	M1. Applies proper law of largerithms to proless 21st 2 by 1st 2 ³ and 1st 9						
(11)	M1: Applies power law of logarithms to replace $3\log_a 2$ by $\log_a 2^3$ or $\log_a 8$ dM1: (should not be following M0) Uses addition law of logs to give $\log_a 2^3$ $y = 5$ or $\log_a 8y = 5$						
(i)	Special case 1: $\log_2(2x) = \log_2(5x+4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x+4)} = -3 \Rightarrow \frac{2x}{5x+4} = 2^{-3} \Rightarrow x = \frac{4}{10}$						
	$\log_2(2x) = \log_2(5x+4) - 3 \Rightarrow \frac{\log_2(2x)}{\log_2(5x+4)} = -3 \Rightarrow \log_2\frac{2x}{5x+4} = -3 \Rightarrow \frac{2x}{5x+4} = 2^{-3} \Rightarrow x = -3 \Rightarrow \frac{2x}{5x+4} = 2^{-3} \Rightarrow x = -3 \Rightarrow \log_2(5x+4) = -3 \Rightarrow$						
	attempt scores M0M1M1A0 – special case						
	Special case 2:						
	$\log_2(2x) = \log_2(5x + 4) - 3 \Rightarrow \log_2 2 + \log_2 x = \log_2(5x + 4) - 3$, is M0 until the two log terms	s are					
	combined to give $\log_2\left(\frac{5x+4}{x}\right) = 3 + \log_2 2$. This earns M1						
	Then $\left(\frac{5x+4}{x}\right) = 2^4$ or $\log_2\left(\frac{5x+4}{x}\right) = \log_2 2^4$ gets second M1. Then scheme as before.						

Question Number	Scheme	Marks
8. (i)	$(\alpha = 56.3099)$	
	$x = {\alpha + 40 = 96.309993} = $ awrt 96.3	B1
	$x - 40^{\circ} = -180 + "56.3099"$ or $x - 40^{\circ} = -\pi + "0.983"$	M1
	$x = \{-180 + 56.3099 + 40 = -83.6901\} = $ awrt -83.7	A1
		(3)
(ii)(a)	$\sin\theta \left(\frac{\sin\theta}{\cos\theta}\right) = 3\cos\theta + 2$	M1
	$\left(\frac{1-\cos^2\theta}{\cos\theta}\right) = 3\cos\theta + 2$	dM1
	$1 - \cos^2 \theta = 3\cos^2 \theta + 2\cos \theta \implies 0 = 4\cos^2 \theta + 2\cos \theta - 1 $	A1 cso * (3)
(b)	$-2 \pm \sqrt{4 - 4(4)(-1)}$	
	$\cos \theta = \frac{-2 \pm \sqrt{4 - 4(4)(-1)}}{8}$	M1
	or $4(\cos\theta \pm \frac{1}{4})^2 \pm q \pm 1 = 0$, or $(2\cos\theta \pm \frac{1}{2})^2 \pm q \pm 1 = 0$, $q \neq 0$ so $\cos\theta =$	
	One solution is 72° or 144°, Two solutions are 72° and 144°	A1, A1
	$\theta = \{72, 144, 216, 288\}$	M1 A1
		(5)
	Notes for Question 8	[11]
(i)	B1: 96.3 by any or no method M1: Takes 180 degrees from arctan (1.5) or from their "96.3" May be implied by A1. (Could obtained by adding 180, then subtracting 360). A1: awrt -83.7 Extra answers: ignore extra answers outside range. Any extra answers in range lose final A material earned) Working in radians – could earn M1 for $x - 40^{\circ} = -\pi + "0.983"$ so B0M1A0	ark (if
(ii) (a)	M1: uses $\tan \theta = \frac{\sin \theta}{\cos \theta}$ or equivalent in equation (not just $\tan \theta = \frac{\sin \theta}{\cos \theta}$, with n argument)	О
	dM1: uses $\sin^2 \theta = 1 - \cos^2 \theta$ (quoted correctly) in equation	
(b)	A1: completes proof correctly, with no errors to give printed answer*. Need at least three step and need to achieve the correct quadratic with all terms on one side and "=0"	s in proof
(6)	M1: Attempts to solve quadratic by correct quadratic formula, or completion of the square. Factorisation attempts score M0. 1 st A1: Either 72 or 144, 2 nd A1: both 72 and 144 (allow 72.0 etc.) M1: 360 – "a previous solution" (provided that cos was being used) (not dependent on previous A1: All four solutions correct (Extra solutions in range lose this A mark, but outside range - i (Premature approximation: e.g. 71.9, 144.1, 288.1 and 215.9 – lose first A1 then ft other and Do not require degrees symbol for the marks Special case: Working in radians	gnore)
	M1: as before, A1 for either $\theta = \frac{2}{5}\pi$ or $\theta = \frac{4}{5}\pi$ or decimal equivalents, and 2^{nd} A1: both	
	M1: $2\pi - \alpha_1$ or $2\pi - \alpha_2$ then A0 so 4/5	

Question Number	Scheme	Marks
9. (a)	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \right\} 2x - 16x^{-\frac{1}{2}}$	M1 A1
	$2x - 16x^{-\frac{1}{2}} = 0 \implies x^{\frac{3}{2}} = , x^{-\frac{3}{2}} = , \text{or } 2x - 16x^{-\frac{1}{2}} \text{ then squared then obtain } x^3 = $ [or $2x - 16x^{-\frac{1}{2}} = 0 \implies x = 4 \text{ (no wrong work seen)}$]	M1
	$(x^{\frac{3}{2}} = 8 \Rightarrow) x = 4$	A1
	$x = 4$, $y = 4^2 - 32\sqrt{4} + 20 = -28$ (ignore $y = 100$ as second answer)	M1 A1 (6)
(b)	$\left\{\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \right\} 2 + 8x^{-\frac{3}{2}}$	M1 A1
	$(\frac{d^2y}{dx^2} > 0 \Rightarrow) y$ is a minimum (there should be no wrong reasoning)	A1 (3)
		[9]
	M1 for finding the gradient either side of their x -value from part (a). A1 for both gradients calculated correctly to 1 significant figure, then using < 0 and > 0 responsible by use of sketch or table. (See appendix for gradient values. This is not ft their x) A1 states minimum needs M1A1 to have been awarded.	<u>pectively</u>
	Notes for Question 9	
(a)	1st M1: At least one term differentiated correctly, so $x^2 \to 2x$, or $32\sqrt{x} \to 16x^{-\frac{1}{2}}$, or 20 A1: This answer or equivalent e.g. $2x - \frac{16}{\sqrt{x}}$ 2nd M1: Sets their $\frac{dy}{dx}$ to 0, and solves to give $x^{\frac{3}{2}} = $, $x^{-\frac{3}{2}} = $ or $x^3 = $ after correct squaring or	
	(NB $\left\{\frac{d^2y}{dx^2} = 0\right\}$ so $2 + 8x^{-\frac{3}{2}} = 0$ is M0) N.B. Common error: Putting derivative = 0 and merely obtaining $x = 0$ is M0A0, then M0A two marks. (The first two marks in (a) and marks for second derivative may be earned in pa A1: $x = 4$ cao [$x = -4$ is A0 and $x = \pm 4$ is also A0]	
	3 rd M1: Substitutes their positive found x (NOT zero) into $y = x^2 - 32\sqrt{x} + 20$, $x > 0$.	hould
	follow attempting to set $\frac{dy}{dx} = 0$ and not setting $\frac{d^2y}{dx^2} = 0$	
(b)	A1: -28 cao (Does not need to be written as coordinates) M1: Attempts differentiation of their first derivative with at least one term differentiated corshould be seen or referred to (in part (b)) in determining the nature of the stationary point. A1: Answer in scheme or equivalent	rrectly.
	A1: States minimum (Second derivative should be correct- can follow incorrect positive x. M1A1 to have been awarded- should not follow incorrect reasoning – (need not say	Needs
	$\frac{d^2y}{dx^2} > 0$ but should not have said $\frac{d^2y}{dx^2} = 0$ for example)	

Question Number	Scheme	Marks					
10. (a)							
	Equation of form $(x \pm 5)^2 + (y \pm 9)^2 = k$, $k > 0$	M1					
	Equation of form $(x - a)^2 + (y - b)^2 = 5^2$, with values for a and b	M1					
	$(x+5)^2 + (y-9)^2 = 25 = 5^2$	A1					
	P(8, -7). Let centre of circle = $X(-5, 9)$	(3)					
(b)	$PX^2 = (8 - "-5")^2 + (-7 - "9")^2$ or $PX = \sqrt{(85)^2 + (-7 - 9)^2}$	M1					
	$(PX = \sqrt{425} \text{ or } 5\sqrt{17})$ $PT^2 = (PX)^2 - 5^2 \text{ with numerical } PX$	dM1					
	$PT \left\{ = \sqrt{400} \right\} = 20$ (allow 20.0)	A1 cso					
		(3) [6]					
Alternative 2 for (a)	Equation of the form $x^2 + y^2 \pm 10x \pm 18y + c = 0$	M1					
	Uses $a^2 + b^2 - 5^2 = c$ with their a and b or substitutes (0, 9) giving $+9^2 \pm 2b \times 9 + c = 0$	M1					
	$x^2 + y^2 + 10x - 18y + 81 = 0$	A1					
		(3)					
A 14 4*	An attempt to find the point T may result in pages of algebra, but solution needs to reach						
Alternative 2 for (b)	$(-8, 5)$ or $\left(\frac{-8}{17}, 11\frac{2}{17}\right)$ to get first M1 (even if gradient is found first)	M1					
	M1: Use either of the correct points with $P(8, -7)$ and distance between two points formula	dM1					
	A1: 20	Alcso					
		(3)					
Alternative 3 for (b)	Substitutes (8, -7) into circle equation so $PT^2 = 8^2 + (-7)^2 + 10 \times 8 - 18 \times (-7) + 81$	M1					
	Square roots to give $PT = \sqrt{400} = 20$	dM1A1 (3)					
	Notes for Question 10						
(0)	The three marks in (a) each require a circle equation – (see special cases which are not M1. Uses coordinates of centre to obtain LUS of simple equation (BUS must be x^2 on $k > 0$						
(a)	M1: Uses coordinates of centre to obtain LHS of circle equation (RHS must be r^2 or $k > 0$ positive value)	or a					
	M1: Uses $r = 5$ to obtain RHS of circle equation as 25 or 5^2						
	A1: correct circle equation in any equivalent form						
	Special cases $(x \pm 5)^2 + (x \pm 9)^2 = (5^2)$ is not a circle equation so M0M0A0						
	Also $(x \pm 5)^2 + (y-9) = (5^2)$ And $(x \pm 5)^2 - (y \pm 9)^2 = (5^2)$ are not circles and gain M0M	0A0					
	But $(x-0)^2 + (y-9)^2 = 5^2$ gains M0M1A0						
(b)	M1: Attempts to find distance from their centre of circle to P (or square of this value). If t called PT and given as answer this is M0. Solution may use letter other than X , as centre w labelled in the question. N.B. Distance from $(0, 9)$ to $(8, -7)$ is incorrect method and is M0, followed by M0A0.						
	dM1: Applies the subtraction form of Pythagoras to find PT or PT^2 (depends on previous mark for distance from centre to P) or uses appropriate complete method involving trigono A1: 20 cso						

Question Number		Scheme					
Aliter	Gradient	Gradient Test Method:					
9. (b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$	$-16x^{-\frac{1}{2}}$					
Way 2	Helpful to						
		х	$\frac{\mathrm{d}y}{\mathrm{d}x}$				
		3	-3.2376				
		3.1	-2.88739				
		3.2	-2.54427				
		3.3	-2.20771				
		3.4	-1.87722				
		3.5	-1.55236				
		3.6	-1.23274				
		3.7	-0.918				
		3.8	-0.60783				
		3.9	-0.30191				
		4	0				
		4.1	0.298163				
		4.2	0.592799				
		4.3	0.884115				
		4.4	1.172299				
		4.5	1.457528				
		4.6	1.739962				
		4.7	2.01975				
		4.8	2.297033				
		4.9	2.571937				
		5	2.844582				

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UA035664 Summer 2013

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

